罗培高 更新日期:2024-07-04
罗培高,男,1977年出生,博士导师
工作单位 农学院
电子邮箱 lpglab@sicau.edu.cn
招生专业 【博士】:0901Z1药用植物学095100农业,【学硕】:0901Z1药用植物学,【专硕】:095131农艺与种业
◆个人简历
罗培高,教授 博士生导师
授课课程:
1.普通遗传学,本科课程
2.生命科学研究进展、高级植物生理学,研究生课程
主要从事小麦抗病基因挖掘与抗病高产小麦品种的选育及基础理论研究,在小麦抗白粉病、条锈病、赤霉病机理解析、抗病育种以及抗病高产小麦的创制与推广等领域取得了系统性成果,主要包括:(1)鉴定4个小麦条锈病抗性基因Yr41、YrCN17、YrR212和YrYU25;(2)鉴定2个小麦白粉病抗性基因Pm40和PmYU25;(3)利用染色体工程技术创制了4个小麦赤霉病抗性新种质L658、L693、L696和L699;(4)阐明了小麦衰老叶片与产量改良的细胞学机制,提出了叶绿体超微结构再生假说;(5)参与培育了“川农号”系列小麦新品种10余种,如川农11、12、17、18、19、20、21、22、23、25、26、27和32等,其中多个品种被四川省政府推荐为重点推广品种。自2015年以来致力于三叶木通产业的发展,探索了一条适宜于西南地区中高山产业扶贫与科技扶贫的新路,同时,对三叶木通在食药油赏方面的优良农艺性状进行挖掘和驯化育种研究,取得了国际领先成果:(1)完成了三叶木通全基因组测序及组装;(2)选育优异品系“蜀森11”、“蜀森13”和“蜀森14”等。先后主持国家自然科学基金2项、教育部霍英东青年教师基金1项,教育部、科技部和四川省杰出青年基金等课题10余项。以第一或通讯作者在《The Plant Journal》、《Plant, Cell & Environment》、《Theoretical and Applied Genetics》等国内外学术刊物上发表学术论文90余篇,其中SCI或SSCI收录论文52篇。已指导毕业博士生8名、硕士研究生34名。
◆工作经历
2003/07-2005/12,四川农业大学,农学院,助教
2006/01-2008/12,四川农业大学,农学院,讲师
2006/09-2008/12,电子科技大学,生命科学与技术学院,博士后
2009/01-2010/12,四川农业大学,农学院,副教授/硕士研究生导师
2009/03-2012/12,中国农业大学 农学与生物技术学院博士后
2013/12-2014/12,堪萨斯州立大学(美国) 植物病理系访问学者
2011/01- 至今, 四川农业大学,农学院,教授/博(硕)士研究生导师
◆教育经历
1996.09-2000.07 四川农业大学林学院学士
2000.09-2003.07 四川农业大学农学院硕士研究生
2003.09-2006.07,四川农业大学农学院博士)
2006.09-2008.12,电子科技大学生命科学与技术学院博士后)
2009.03-2012.12 中国农业大学农学与生物技术学院博士后
◆获奖荣誉
1.2023年四川省科学技术进步奖二等奖,排名第一
2.2023年成都市最美科技工作者
3.2020年四川省教书育人名师
4.2019年雅安杰出人才
5.2018年四川省科学技术进步二等奖,排名第六
6.2018年四川省第八届高等教育优秀教学成果二等奖,排名第一
7.2017年四川农业大学第八届校级教学成果一等奖,排名第一
8.2015年入选四川省学术技术带头人
9.2013年获山西省科学技术进步一等奖,排名第四
◆社会、学会及学术兼职
美国植物病理学会、中国细胞生物学会、中国遗传学会、四川省细胞生物学会和四川省遗传学会会员。
◆研究领域
小麦抗病性和叶片衰老特性的分子遗传研究;
八月瓜的驯化和育种研究;
◆科研项目
1.四川省科技厅,新型优质水果产业链配套关键技术集成与创新应用示范(园区项目),2022/01-2023/12,200万,主持川农大经费90万。
2.四川省科技厅,新品种食药油赏同源果树产业技术培训与成果示范推广(科技特派员),2022/01-2024/12,60万,主持川农大经费27万。
3.四川省科技厅,九龙县特色经济植物标准化栽培与乡村振兴示范(示范基地),2022/01-2023/12,50万,主持川农大经费20万。
4.四川省中医药管理局,木通种质资源活体基因库建立与开发利用,2023/03-2025/03,30万,主持。
已结题项目20余项:
5.国家自然科学基金面上项目(31271721),小麦赤霉病新抗源L693的抗性遗传机制及其抗性基因的分子标记定位,2013/01-2016/12,85万,结题,主持。
6.国家自然科学基金面上项目,小麦条锈病抗性基因YrL693的精细定位与克隆(31571661),2016.1-2019.12,67万,结题,主持。
7.教育部霍英东高校青年教师基金(111030),小麦条锈菌诱导抗性表达谱分析及其抗病反应的分子机理,2008.04-2011.04,10万,结题,主持。
8.四川省杰出青年科技基金(2010JQ0042),来源于中间偃麦草的小麦条锈病抗性新基因的染色体定位及相关EST克隆的分离,2010/01-2012/12,30万,结题,主持。
9.教育部科技研究重点项目(146),小麦赤霉病新抗源L693的抗性遗传机制研究,2012/01-2014/12,5万,结题,主持。
10.四川省科技厅,小麦新种质PI672538中赤霉病抗性QTLs的精细定位与克隆(重点)(2017JY0012),2017.1-2019.12,30万,结题,主持。
11.四川省科技厅,三叶木通专用微核心种质群体构建及其遗传学研究,2020/01-2021/12,65万,结题,主持。
12.成都市科技局,八月瓜良种育繁推关键环节的技术集成与平台搭建,2021/08-2022/07,10万,结题,主持。
13.四川省卫计委项目,《四川省食品安全地方标准——八月瓜》标准制定,2017/9-2018/9,10万,结题,主持。
14.四川省科技厅,瓦屋山地区珍稀植物人工繁育技术集成及生态种植示范项目,2019/08-2020/08,100万,结题,主研。
15.四川省科技厅,蜀丰星创天地(创新能力培育),2018.1-2020.12,50万,结题,主研。
16.四川省科技厅,八月瓜果酱及八月瓜果汁加工工艺的研究,2017/1-2019/1,30万,结题,主研。
17.四川省科技厅,八月瓜专用新品种培育关键技术攻关与应用示范,2020/01-2022/12,50万,结题,主研。
18.四川省科技厅,三叶木通生物活性物质的遗传解析与全基因组选择育种,2019/01-2021/12,50万,结题,主研。
19.四川省科技厅,低产猕猴桃果园的改造与升级(创新能力培育),2020/02-2022/12,30万,结题,主研。
20.四川省科技厅,三叶木通全产业链的科技创新与集成示范(国家农业科技园区创新项目),2019/01-2020/12,200万,结题,主研。
21.科技部(中央引导地方专项),八月瓜(三叶木通)一二三产业协同创新与科技示范,2018.3-2020.12,100万,结题,主研。
22.四川省科技厅,大渡河中游中高山区食用植物资源综合利用及康养休闲农业集成示范项目,2019/08-2020/08,50万,结题,主研。
23.四川省科技厅项目,八月瓜果酱及八月瓜果汁加工工艺的研究,2017/1-2019/1,30万,结题,主研。
◆发表论文
小麦抗条锈病新基因YrCN19(Yr41)的鉴定、染色体定位和标记
Identification, Chromosome Location, and Diagnostic Markers for a New Gene (YrCN19) for Resistance to Wheat Stripe Rust. Phytopathology, 2005, 95:1266-1270.
Several wheat lines and cultivars of wheat (Triticum aestivum) originating from the southwestern region of China were found to be highlresistant to stripe rust by inoculation with the prevalent races (CYR30CYR31, and CYR32) and newly emerged races (H46-4.SY11-4 andSY11-14) of the pathogen. An inheritance study of the resistance to striperust was carried out by crossing resistant AIM6 with susceptible Beiz76. Results indicated that the resistance to stripe rust was controlled by a single dominant gene. The 112F, plants chosen from the cross BeizZ76AIM6 were analyzed with 218 pairs of microsatellite primers to determine the map location of the resistance gene. A simple sequence repeamarker on chromosome arm 2BS, Xgwm40, showed polymorphism ancco-segregation between stripe rust resistant and susceptible plants. Fromthe pedigree, inheritance, molecular marker, and resistance response, it isconcluded that the stripe rust resistance gene in wheat cv. Chuan-nong19(CN19) and wheat lines AIM5 and AI6 is a novel gene, designatedYrCN19. The microsatellite primer Xgwm410 is a diagnostic marker ofthe resistance gene YrCN19, which has potential for application in themarker-assisted breeding of wheat.

三叶木通染色体水平基因组是研究白垩纪植物进化和环境适应的重要资源
The chromosome-level genome of Akebia trifoliata as an important resource to study plant evolution and environmental adaptation in the Cretaceous. The Plant Journal. 2022, 112(5):1316-1330.
The environmental adaptation of eudicots is the most reasonable explain why they compose of the largest clade of modern plants (more than 70% of angiosperms), which indicates that the early diverging eudicots (also called basal eudicots) would be valuable and helpful to study surviving and thriving of them in evolutionary process. Here we judged two detectable whole genome duplicate (WGD) events in the high-quality assembled Akebia trifoliata genome (652.73 Mb) with 24,138 protein-coding genes based on the evidences of intragenomic and intergenomic collinearity, synonymous substitution rate (KS) values and chromosomal fusion traces, putatively occurred at 85.15 and 146.43 million years ago (Mya), respectively. The integrated analysis of 16 specie consisting of eight basal and eight core eudicots further revealed that there possible was a putative ancient WGD at early stage of eudicots (temporarily designated as θ) at 142.72 Mya, similar to the older WGD of A. trifoliata, and a putative core eudicots-specific WGD (temporarily designated ω). Functional enrichment analysis of the duplicated genes afforded an explanation for θ event facilitated survival from extinction event with an extreme change in both the carbon dioxide concentration and desiccation around the Jurassic-Cretaceous boundary, while those ω favored rapid spread in the mid-Cretaceous when the environment with more drought occurred. Collectively, A. trifoliata genome experienced two WGD events and the older perhaps occur at early stage of eudicots, which could increase plant environmental adaptability and help them survive in ancient extreme environments.

三叶木通超氧化物歧化酶全基因组鉴定及其在果实发育和生物胁迫中的表达生物信息学研究
Genome-Wide Identification of Superoxide Dismutase and Expression in Response to Fruit Development and Biological Stress in Akebia trifoliata: A Bioinformatics Study. Antioxidants 2023,12, 726.
Akebia trifoliata is a newly domesticated perennial fruit tree, and the lack of molecular research on stress resistance seriously affects its genetic improvement and commercial value development. Superoxide dismutase (SOD) can effectively eliminate the accumulation of reactive oxygen species (ROS) during the rapid growth of plant organs under biotic and abiotic stresses, maintaining a steady state of physiological metabolism. In this study, 13 SODs consisting of two FeSODs (FSDs), four MnSODs (MSDs) and seven Cu/ZnSODs (CSDs) were identified in the A. trifoliata genome. Structurally, the phylogeny, intron–exon pattern and motif sequences within these three subfamilies show high conservation. Evolutionarily, segmental/wide genome duplication (WGD) and dispersed duplication form the current SOD profile of A. trifoliata. Weighted gene coexpression network analysis (WGCNA) revealed the metabolic pathways of nine (69.2%) SODs involved in fruit development, among which AktMSD4 regulates fruit development and AktCSD4 participates in the stress response. In addition, under the stress of multiple pathogens, six (46.6%) SODs were continuously upregulated in the rinds of resistant lines; of these, three SODs (AktMSD1, AktMSD2 and AktMSD3) were weakly or not expressed in susceptible lines. The results pave the way for theoretical research on SODs and afford the opportunity for genetic improvement of A. trifoliata.

代表性学术论文(近五年)
1.Chen, W., Yang, H., Yang, H. et al. (2023) Genome-wide SSR marker analysis to understand the genetic diversity and population sub-structure in Akebia trifoliata. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-023-01602-y.
2.Zhang, Q.; Zhong, S.; Dong, Q.; Yang, H.; Yang, H.; Tan, F.; Chen, C.; Ren, T.; Shen, J.; Cao, G.; Luo, P. (2023) Identification of Photoperiod- and Phytohormone-Responsive DNA-Binding One Zinc Finger (Dof) Transcription Factors in Akebia trifoliata via Genome-Wide Expression Analysis. Int J Mol Sci. 24, 4973. https://doi.org/10.3390/ijms24054973
3.Yang, H.; Zhang, Q.; Zhong, S.; Yang, H.; Ren, T.; Chen, C.; Tan, F.; Cao, G.; Liu, J.; Luo, P. (2023) Genome-Wide Identification of Superoxide Dismutase and Expression in Response to Fruit Development and Biological Stress in Akebia trifoliata: A Bioinformatics Study. Antioxidants 12, 726. https://doi.org/10.3390/antiox12030726
4.Zhong S, Guan J, Chen C, Tan F, Luo P. (2022) Multiomics analysis elucidated molecular mechanism of aromatic amino acid biosynthesis in Akebia trifoliata fruit. Front Plant Sci. Nov 8;13:1039550. doi: 10.3389/fpls.2022.1039550.
5.Zhong S, Li B, Chen W, Wang L, Guan J, Wang Q, Yang Z, Yang H, Wang X, Yu X, Fu P, Liu H, Chen C, Tan F, Ren T, Shen J, Luo P. (2022) The chromosome-level genome of Akebia trifoliata as an important resource to study plant evolution and environmental adaptation in the Cretaceous. Plant J. Dec;112(5):1316-1330. doi: 10.1111/tpj.16011.
6.Zhong, S.; Yang, H.; Guan, J.; Shen, J.; Ren, T.; Li, Z.; Tan, F.; Li, Q.; Luo, P. (2022) Characterization of the MADS-Box Gene Family in Akebia trifoliata and Their Evolutionary Events in Angiosperms. Genes 13, 1777. https://doi.org/10.3390/genes13101777
7.Zhu J, Zhong S, Guan J, Chen W, Yang H, Yang H, Chen C, Tan F, Ren T, Li Z, Li Q, Luo P. (2022) Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Akebia trifoliata: A Bioinformatics Study. Genes (Basel). Aug 26;13(9):1540. doi: 10.3390/genes13091540.
8.Chen W, Yang H, Zhong S, Zhu J, Zhang Q, Li Z, Ren T, Tan F, Shen J, Li Q, Luo P. (2022) Expression Profiles of Microsatellites in Fruit Tissues of Akebia trifoliata and Development of Efficient EST-SSR Markers. Genes (Basel). Aug 15;13(8):1451. doi: 10.3390/genes13081451.
9.Zhong S, Chen W, Yang H, Shen J, Ren T, Li Z, Tan F, Luo P. (2022) Characterization of Microsatellites in the Akebia trifoliata Genome and Their Transferability and Development of a Whole Set of Effective, Polymorphic, and Physically Mapped Simple Sequence Repeat Markers. Front Plant Sci. Mar 18;13:860101. doi: 10.3389/fpls.2022.860101.
10.Guan, J.; Fu, P.; Wang, X.; Yu, X.; Zhong, S.; Chen, W.; Yang, H.; Chen, C.; Yang, H.; Luo, P. (2022) Assessment of the Breeding Potential of a Set of Genotypes Selected from a Natural Population of Akebia trifoliata (Three–Leaf Akebia). Horticulturae, 8, 116. https://doi.org/10.3390/horticulturae8020116
11.Huang, Q.; Luo, P. (2021) Effects of Leaf Cutting on Fusarium Head Blight Disease Development, Photosynthesis Parameters and Yield of Wheat under F. graminearum Inoculation Condition. Agriculture, 11, 1065. https://doi.org/10.3390/agriculture11111065
12.Yang, H.; Zhong, S.; Chen, C.; Yang, H.; Chen, W.; Tan, F.; Luo, PG. (2021). Identification and Cloning of a CC-NBS-NBS-LRR Gene as a Candidate of Pm40 by Integrated Analysis of Both the Available Transcriptional Data and Published Linkage Mapping. International Journal of Molecular Sciences. 22, 10239
13.Yang, H.; and Luo, PG. (2021). Changes in Photosynthesis Could Provide Important Insight into the Interaction between Wheat and Fungal Pathogens. International Journal of Molecular Sciences. 22, 8865.
14.Yu, X.; Zhong, S.; Yang, H.; Chen, C.; Chen, W.; Luo, PG. (2021). Identification and Characterization of Nucleotide Binding Sites Resistance Genes in Akebia trifoliata. Frontiers in Plant Science. 12,758559.
15.Hu,Y.; Hu, Zhong, SF.; Zhang, M; Liang, YP.; Gong, GS.; Chang, XL.; Tan, FQ.; Yang, H.; Luo, PG. (2020). Potential Role of Photosynthesis in the Regulation of Reactive Oxygen Species and Defence Responses to Blumeria graminis f. sp. tritici in Wheat. International Journal of Molecular Sciences, 21(16).
16.Huang, Q.; Luo, PG. (2021). Effects of Leaf Cutting on Fusarium Head Blight Disease Development, Photosynthesis Parameters and Yield of Wheat under F. graminearum Inoculation Condition. Agriculture 2021, 11(11), 1065.
17.Yang, H.; Chen, W.; Fu, P.; Zhong, S.; Guan, J.; and Luo, PG. (2020). Developmental Stages of Akebia trifoliata Fruit Based on Volume. Horticulture Science and Technology.
18.Hu, Y., Liang, Y., Zhang, M., Tan, F., Zhong, S., Li, X., Gong G., Li, T., Luo, P. (2018). Comparative transcriptome profiling of Blumeria graminis f. sp. tritici during compatible and incompatible interactions with sister wheat lines carrying and lacking Pm40. PloS one, 13(7), e0198891.
前阶段代表论文(部分)
1.陈巍,钟胜福,陈华保,罗培高.(2017). 三叶木通资源开发利用与精准扶贫战略研究——以石棉县为例. 中国野生植物资源, 36(5), 71-74.
2.Li, X., Xiang, Z. P., Chen, W. Q., Huang, Q. L., Liu, T. G., Li, Q., Luo, P. G. (2017). Reevaluation of two quantitative trait loci for type ii resistance to fusarium head blight in wheat germplasm pi 672538. Phytopathology, 107(1), 92-99.
3.Li, Q., Zhong, S., Sun, S., Fatima, S. A., Zhang, M., Chen, W., Luo, P. (2017). Differential effect of whole-ear shading after heading on the physiology, biochemistry and yield index of stay-green and non-stay-green wheat genotypes. PloS one, 12(2), e0171589.
4.Yang, S., Li, X., Chen, W., Liu, T., Zhong, S., Ma, L., Luo, P. (2016). Wheat resistance to fusarium head blight is associated with changes in photosynthetic parameters. Plant Disease, 100(4), 847-852.
5.Li, X., Liu, T., Chen, W., Zhong, S., Zhang, H., Tang, Z., Rao, H. (2015). Wheat WCBP1 encodes a putative copper-binding protein involved in stripe rust resistance and inhibition of leaf senescence. BMC plant biology, 15(1), 239.
6.Shen, X. K., Ma, L. X., Zhong, S. F., Liu, N., Zhang, M., Chen, W. Q., Bai, G. H. (2015). Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theoretical and applied genetics, 128(3), 517-528.
7.Huang, Q., Li, X., Chen, W. Q., Xiang, Z. P., Zhong, S. F., Chang, Z. J., Luo, P. G. (2014). Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theoretical and applied genetics, 127(4), 843-853.
8.Luo, P. G., Deng, K. J., Hu, X. Y., Li, L. Q., Li, X., Chen, J. B., Tan, F. Q. (2013). Chloroplast ultrastructure regeneration with protection of photosystem II is responsible for the functional ‘stay‐green’trait in wheat. Plant, cell & environment, 36(3), 683-696.
9.Luo PG*, Lu CG. 2013. The genetics dynamics responsible for species origins: the introduction of the concept of core gene groups, 5: 1321-1334.